If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^3+2P^2-9P-18=0
We add all the numbers together, and all the variables
2P^2-9P=0
a = 2; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·2·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*2}=\frac{0}{4} =0 $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*2}=\frac{18}{4} =4+1/2 $
| 1/5x-10=10 | | 4x-8+3x+28=90 | | -2/3(-3/4x+12)=8 | | 2/43=j/133 | | 6(e+2)=18 | | 3n2=75 | | 6x-10=x+15 | | 9x-11=5x/16 | | 37=6t+13 | | 7(3w+4)/5=3 | | -5x+11+7x-23=-4 | | 18x-2+103+15=180 | | (7t-11)/(4)=13-t | | 17=3r | | x+0.07x=63772 | | -11+x=x-6 | | 14=-5t-6 | | 30=3h+18 | | (x-3)(x+4)=x2+4 | | 108=6k | | 2h=(10h)/(11)+12 | | 3x+6x-8=37 | | k+4=(7k-4)/(3) | | x+3)^4+(x+2)^4+(x+1)^4=98 | | 4x^2+40x-320=0 | | z/8+5=-48 | | 12t+9=9t | | 45=12+e | | -3=r/9+8 | | 16x²+8x+1=16 | | k/9+3=14 | | k+4=(7k-4)/3 |